Novel allosteric effects of amiodarone at the muscarinic M5 receptor.

نویسندگان

  • Edward Stahl
  • John Ellis
چکیده

Allosteric sites on muscarinic receptors may present superior therapeutic targets for several central nervous system disorders, due to the potential of allosteric ligands to provide more selective modulation and to preserve the spatiotemporal patterning that is characteristic of synaptic transmission. We have found that the antiarrhythmic drug amiodarone interacts allosterically with M(1) and M(5) muscarinic receptors. At both M(1) and M(5), amiodarone was only able to partially inhibit the binding of the orthosteric antagonist [(3)H]N-methylscopolamine (NMS). In addition, amiodarone was able to alter the rate of dissociation of [(3)H]NMS from M(1) and M(5) receptors. These findings suggest that NMS and amiodarone are able to bind to the receptor simultaneously. The pharmacology of the effect on NMS dissociation demonstrated that amiodarone was not interacting at the "common" site at which gallamine, obidoxime, and many other muscarinic allosteric ligands are known to bind. In functional studies, amiodarone enhanced the ability of acetylcholine (at EC(20)) to activate the M(5) receptor; however, under the same conditions, amiodarone did not enhance M(1) activation. More detailed studies at M(5) found that the effect of amiodarone was to enhance the efficacy of acetylcholine, without increasing its potency. This report describes the first demonstration of allosteric enhancement of efficacy at the M(5) receptor, and the first demonstration of enhancement of efficacy but not potency at any muscarinic receptor. In summary, amiodarone has been shown to be a novel positive allosteric modulator of muscarinic receptors that is selective for the M(5) subtype, relative to M(1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

BACKGROUND Many neuromuscular blockers act as negative allosteric modulators of muscarinic acetylcholine receptors by decreasing affinity and potency of acetylcholine. The neuromuscular blocker rapacuronium has been shown to have facilitatory effects at muscarinic receptors leading to bronchospasm. We examined the influence of rapacuronium on acetylcholine (ACh) binding to and activation of ind...

متن کامل

Allosteric interactions with muscarinic acetylcholine receptors: Complex role of the conserved tryptophan M2Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity

In general, the M2 subtype of muscarinic acetylcholine receptors has the highest sensitivity for allosteric modulators and the M5 subtype the lowest. The M2/M5 selectivity of some structurally diverse allosteric agents is known to be completely explained by M2 Tyr and M2 Thr in receptors whose orthosteric site is occupied by the conventional ligand N-methylscopolamine (NMS). This study explored...

متن کامل

Development of a Highly Potent, Novel M5 Positive Allosteric Modulator (PAM) Demonstrating CNS Exposure: 1-((1H-Indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380)

A functional high throughput screen identified a novel chemotype for the positive allosteric modulation (PAM) of the muscarinic acetylcholine receptor (mAChR) subtype 5 (M5). Application of rapid analog, iterative parallel synthesis efficiently optimized M5 potency to arrive at the most potent M5 PAMs prepared to date and provided tool compound 8n (ML380) demonstrating modest CNS penetration (h...

متن کامل

Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors.

Two epitopes have been identified recently to be responsible for the high-affinity binding of alkane-bisammonium and caracurine V type allosteric ligands to N-methylscopolamine (NMS)-occupied M2 muscarinic acetylcholine receptors, relative to M5 receptors: the amino acid M2-Thr423 at the top of transmembrane region (TM) 7 and an epitope comprising the second extracellular loop (o2) of the M2 re...

متن کامل

Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies.

We studied the interactions of strychnine, brucine, and three of the N-substituted analogues of brucine with [3H]N-methylscopolamine (NMS) and unlabeled acetylcholine at m1-m5 muscarinic receptors using equilibrium and nonequilibrium radioligand binding studies. The results were consistent with a ternary allosteric model in which both the primary and allosteric ligands bind simultaneously to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 334 1  شماره 

صفحات  -

تاریخ انتشار 2010